How to recover cryptographic keys from partial information

Nadia Heninger

University of Pennsylvania

December 10, 2018

Motivation: Side-channel attacks

5s.

30s.

1m.

5m.

Textbook RSA

[Rivest Shamir Adleman 1977]

Public Key

- N = pq modulus
- *e* encryption exponent e = 65537 in practice

Private Key

p, *q* primes

d decryption exponent $(d = e^{-1} \mod (p-1)(q-1))$

Encryption

CRT RSA

For efficiency, RSA implementations typically precompute

$$d_p \equiv d \mod (p-1)$$
 $d_q \equiv d \mod (q-1)$

Then decrypt or sign by computing

$$m_p = c^{d_p} \mod p$$
 $m_q = c^{d_q} \mod q.$

Let $u = q^{-1} \mod p$. Then we can reconstruct *m* as

 $m = m_q + qu(m_p - m_q)$

Partial key recovery for RSA:

An attacker learns some information about p or q. Can they efficiently factor N?

More realistic scenario:

An attacker learns some information about d_p and d_q . Can they efficiently recover d?

Already-factored modulus: Trivial.

One factor known: Trivial. (Division)

Factoring from CRT coefficients

With high probability, $gcd(a^{ed_p-1}-1, N) = p$ for random a.

Neither factor known: Subexponential time. (Number field sieve)

Trivial. (Division + fixing a few bits.)

Trivial. (Branch and prune.) [Heninger Shacham 09]

Expected polynomial time. (Branch and prune.) [Heninger Shacham 09]

Expected polynomial time for $\geq 50\%$ of bits known. [Heninger Shacham 09]

Expected polynomial time when information/bit \geq .5. [Paterson Polychroniadou Sibborn 2012] [BBGGBHLvVY 2017]

Branch and prune family of algorithms.

(RSA key recovery with redundancy.)

RSA key recovery with erasures

Remove all but a δ -fraction of the bits, chosen at random, from an RSA private key.

(Flip a coin at each bit of the key. With probability δ , the attacker gets to see the bit's value.)

Simplest case

N = pq, get random bits of p and q. N is known.

How to efficiently reconstruct the key?

"For example the paper tries to factor N = pq by writing it as a set of binary equations over the bits of p and q."

> - J.S. Coron, "Ten Reasons why a Paper is Rejected from a Crypto Conference"

Branch and Prune Algorithm

At each step, verify that

- \blacktriangleright $pq = N \mod 2^i$ at each step *i*.
- bits match known information.

Prune otherwise.

Heuristic Running Time Analysis [Heninger Shacham 2009]

Assumption:

After an incorrect guess, induced bits are uniformly random.

Theorem (Heuristic, [BbGGBHLvVY 17])

When the average amount of self-information known is > .5 bit per bit, the algorithm runs in expected linear time.

Key recovery for CRT-RSA with missing bits [IGIES 2015]

Branch-and-prune works the same as before. (Must brute force k_p .)

Key recovery for CRT-RSA with missing bits

RSA equations:
$$ed_p = 1 + k_p(p-1)$$
 $ed_q = 1 + k_q(q-1)$
Rearrange: $(ed_p - 1 + k_p)(ed_q - 1 + k_q) = k_p k_q N$

Then k_p , k_q are related as:

$$(k_p-1)(k_q-1)\equiv k_pk_qN \mod e$$

We do not know k_p or k_q , but we need to brute force at most e possible pairs.

For each guess of k_p , k_q , apply branch and prune to RSA equations.

Application: Cachebleed attack

[Yarom Genkin Heninger 2016]

OpenSSL cache timing countermeasures:

- fixed-window exponentiation
- scatter multipliers in memory.

- Intel introduced cache banks to serve parts of cache.
- Cache bank conflicts produce timing differences.
- ► For windowed exponentiation, learn 3 LSBs of every 5 bits.
- ▶ 4096-bit key: 3.5 minutes on 36 cores, mostly brute-forcing k.

Application: Left-to-right square-and-multiply leak [Bernstein Breitner Genkin Groot Bruinderink Heninger Lange van Vredendaal Yarom 2017]

Libgcrypt sliding window implementation not constant time.
 Flush+Reload cache attack leaks square and multiply sequence.

Only 40% of bits directly leaked \rightarrow not enough to efficiently recover.

We can derive implicit information from square-and-multiply sequence and efficiently recover key. Coppersmith/lattice family of algorithms.

(RSA key recovery without redundancy.)

Polynomial time. (Lattice basis reduction.) [Coppersmith 96]

Polynomial time. (Lattice basis reduction.) [Coppersmith 1996]

Theorem (Coppersmith 1996)

Let N = pq with $p, q \approx \sqrt{N}$. Given half the bits (most or least significant) of p, we can factor N in polynomial time.

- p = random_prime(2^512); q = random_prime(2^512) N = p*q
- 1 1
- a = p (p % 2^86)

 $p = random_prime(2^512); q = random_prime(2^512)$ N = p*q

a = p - (p % 2^86)

sage: hex(a)

'a9759e8c9fba8c0ec3e637d1e26e7b88befeb03ac199d1190
76e3294d16ffcaef629e2937a03592895b29b0ac708e79830
4330240bc000000000000000000000000

Key recovery from partial information.

- p = random_prime(2^512); q = random_prime(2^512) N = p*q
- a = p (p % 2^86)

- $X = 2^{86}$
- M = matrix([[X², X*a, 0], [0, X, a], [0, 0, N]])
- B = M.LLL()

- p = random_prime(2^512); q = random_prime(2^512) N = p*q
- a = p (p % 2^86)

 $X = 2^{86}$

- M = matrix([[X², X*a, 0], [0, X, a], [0, 0, N]])
- B = M.LLL()

 $Q = B[0][0] *x^2/X^2+B[0][1] *x/X+B[0][2]$

sage: a+Q.roots(ring=ZZ)[0][0] == p
True

Partial key recovery and finding solutions modulo divisors

Theorem (Howgrave-Graham)

Given degree d polynomial f, integer N, we can find roots r modulo divisors B of N satisfying

 $f(r) \equiv 0 \mod B$

for
$$|B| > N^{\beta}$$
, when $|r| < N^{\beta^2/d}$.

For RSA partial key recovery, we have

f(x) = a + x

and we want to find a solution vanishing modulo $p \approx N^{1/2}$ for some $p \mid N$.

Coppersmith's Algorithm Outline

Input: polynomial *f*, integer *N*, bound $0 < \beta \le 1$. **Output:** a root *r* modulo *p*, p|N, $p \ge N^{\beta}$.

In our example, we have f(x) = x + a.

We will construct a new polynomial Q(x) so that

Q(r) = 0 over the integers.

If we construct Q(x) as

Q(x) = s(x)f(x) + t(x)N

with $s(x), t(x) \in \mathbb{Z}[x]$, then by construction

 $Q(r) \equiv 0 \bmod p$

(In other words, $Q(x) \in \langle f(x), N \rangle$ over $\mathbb{Z}[x]$.)

Manipulating polynomials

Input: f(x) = x + a, N, β . **Output:** $Q(x) \in \langle f(x), N \rangle$ over $\mathbb{Z}[x]$.

If we only care about polynomials Q of degree 2, then

$$Q(x) = c_2 x f(x) + c_1 f(x) + c_0 N$$

with $c_2, c_1, c_0 \in \mathbb{Z}$.

Manipulating polynomials as coefficient vectors

We can represent elements of $\mathbb{Z}[x]$ as coefficient vectors:

$$g_d x^d + g_{d-1} x^{d-1} + \dots + g_0 \qquad \leftrightarrow \qquad (g_d, g_{d-1}, \dots, g_0)$$

If we construct the matrix

Then the coefficient vector representing our polynomial

$$Q(x) = c_2 x f(x) + c_1 f(x) + c_0 N$$

is an integer combination of the rows of this matrix.

Polynomial coefficient vectors and lattices

The set of vectors generated by integer combinations of the rows of our matrix

is a lattice.
What is a lattice?

Definition

A **lattice** is a discrete additive subgroup of \mathbb{R}^n .

Definition

A **lattice** is a subset of \mathbb{R}^n generated by integer linear combinations of some linearly independent basis $\{b_1, \ldots, b_n\}$.

- Has algebraic properties (it's a group under addition).
- ► Has geometric properties (it lives in ℝⁿ so has dot product, distance).

Properties of lattices: Bases

- In n dimensions a lattice has a basis of size at most n.
- The basis is not unique.

		•	•
	b ₂	•	•
• b1		•	•
•	<i>b</i> ₂	•	Ð

Properties of lattices: Determinant

Definition

The **determinant** of a lattice with a basis matrix B is $|\det B|$.

- The determinant is invariant for a given lattice.
- Gives volume of fundamental parallelepiped.

Properties of lattices: Minima

Let $\lambda_1 > 0$ be the length of the shortest vector in the lattice.

Theorem (Minkowski) $\lambda_1(L) < \sqrt{n} \det L^{1/n}$

Computational problems on lattices: SVP

Shortest Vector Problem (SVP)

Given an arbitrary basis for L, find the shortest vector in L.

SVP is NP-hard.

Computational problems on lattices: CVP

Closest Vector Problem (CVP)

Given an arbitrary basis for L, and a point x find the vector in L closest to x.

CVP is NP-hard.

Algorithmic results

LLL

Given a basis for a lattice can in polynomial time find a *reduced* basis $\{b_i\}$ s.t.

 $|b_i| \leq 2^{(n-1)/2} \lambda_i$

Theorem (LLL (Simplified Version)) We can find a vector of length

$$|v| < 2^{\dim L} (\det L)^{1/\dim L}$$

In practice on random lattices, LLL finds v = 1.02ⁿ(det L)^{1/dim L}. [Nguyen,Stehle]

BKZ

Given a lattice basis, can in time $2^{O(k)}$ find a reduced basis s.t. $|b_i| \le k^{O(n/k)}$.

Coppersmith's method outline

Input: $f(x) \in \mathbb{Z}[x]$, $N \in \mathbb{Z}$. **Output:** r s.t. $f(r) \equiv 0 \mod p$ and $p \mid N$.

Intermediate output: Q(x) such that Q(r) = 0 over \mathbb{Z} .

1. $Q(x) \in \langle f(x), N \rangle$ so $Q(r) \equiv 0 \mod p$ by construction.

2. If |r| < R, then we can bound

$$egin{aligned} |Q(r)| &= |Q_2 r^2 + Q_1 r + Q_0| \ &\leq |Q_2| R^2 + |Q_1| R + |Q_0| \end{aligned}$$

3. If $|Q(r)| < N^{\beta} \le p$ and $Q(r) \equiv 0 \mod p$ then Q(r) = 0.

We want a Q in our lattice with short coefficient vector!

Coppersmith's method outline

- 1. Construct a matrix of coefficient vectors of elements of $\langle f(x), N \rangle$.
- 2. Run a lattice basis reduction algorithm on this matrix.
- 3. Construct a polynomial Q from the shortest vector output.
- 4. Factor Q to find its roots.

Running Coppersmith's method on our example

Input: f(x) = x + a, N **Output:** r < R such that $f(r) \equiv 0 \mod p$.

1. Construct lattice basis

$$egin{bmatrix} R^2 & aR \ R & a \ & N \end{bmatrix}$$

 $\dim L = 3$ $\det L = R^3 N$

Factor of R is so that $Q(r) \leq |v|$ for $v \in L$.

Running Coppersmith's method on our example

Input: f(x) = x + a, N **Output:** r < R such that $f(r) \equiv 0 \mod p$.

1. Construct lattice basis

$$\begin{bmatrix} R^2 & aR \\ R & a \\ & N \end{bmatrix} \qquad \qquad \dim L = 3$$
$$\det L = R^3 N$$

Factor of R is so that $Q(r) \leq |v|$ for $v \in L$.

2. Ignoring approximation factor, we can solve when

$$egin{aligned} |Q(r)| &\leq |v| pprox \det L^{1/\dim L}$$

In the example we had $\lg r = 86$ and $\lg p = 512$.

Achieving the Howgrave-Graham bound $r < p^{1/2}$

- 1. Generate lattice from subset of $\langle f(x), N \rangle^k$.
- 2. Allow higher degree polynomials.

RSA particularly susceptible to partial key recovery attacks.

- ► Can factor given 1/2 bits of *p*. [Coppersmith 96]
- ► Can factor given 1/4 bits of *d*. [Boneh Durfee Frankel 98]
- Can factor given 1/2 bits of $d \mod (p-1)$. [Blömer May 03]

Factoring with Partial Information

Polynomial time. (Lattice basis reduction.) [Blömer May 03]

Key recovery from partial information on CRT-RSA

Assume we know some a such that $d_p = a + r$ and r small.

RSA equation:
$$ed_p = 1 + k_p(p-1)$$

Rearrange: $(ed_p - 1 + k_p) = k_p p$

Then we would like to solve for a small solution r to:

$$x+a-e^{-1}(1+k_p)\equiv 0 \bmod p$$

For *e* small, we can brute force over k_p , and we know p|N.

We can apply Coppersmith/Howgrave-Graham technique as before.

Factoring with Partial Information

Unknown.

Factoring with Partial Information

Polynomial time. (Lattice basis reduction.) [Coppersmith 1996] [Howgrave-Graham 2001] Theorem (Howgrave-Graham 2001) Let N = pq, with $p, q \approx \sqrt{N}$. Given a value a such that

$$a+2^t r=p$$
 for $r\leq \sqrt{p}$,

we can factor N in polynomial time.

Proof.

- 1. Input $f(x) = a + 2^t x$.
- 2. Generate $f'(x) = 2^{-t}f(x)$.
- 3. Run the Howgrave-Graham algorithm.

Factoring with Partial Information

Heuristic polynomial time. (Lattice basis reduction.) [Herrmann May 08]

Theorem (Herrmann May 2008) Let N = pq, with $p, q \approx \sqrt{N}$. Given a value a such that

$$a + 2^{t_1}r_1 + 2^{t_2}r_2 = p$$
 for $r_1r_2 \le p^{0.41}$,

we can factor N in polynomial time.

Proof.

- 1. Input bivariate polynomial $f(x, y) = a + 2^{t_1}x + 2^{t_2}y$.
- 2. Run bivariate extension of Coppersmith/Howgrave-Graham method.

Application: Taiwan Citizen Digital Certificate broken RNG [Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren 2013]

Taiwanese RSA smartcards had broken RNG that would get "stuck":

Used multivariate Coppersmith/Howgrave-Graham method to factor keys by guessing locations that RNG would "stick" and "unstick".

Factoring with Partial Information

Heuristic polynomial time. (Lattice basis reduction.) [Herrmann May 08]

Factoring with Partial Information

Heuristic polynomial in $\lg N$, exponential in number of unknown chunks. (Lattice basis reduction.) [Herrmann May 08]

Theorem (Herrmann May 2008) Let N = pq, with $p, q \approx \sqrt{N}$. Given a value a such that

$$a+2^{t_1}r_1+\cdots+2^{t_m}r_m=p$$
 for $r_1\ldots r_m\leq p^{0.3},$

we can factor N in time polynomial in $\lg N$ and exponential in m.

Proof method.

Multivariate extension of Coppersmith/Howgrave-Graham method.

Factoring with Partial Information

Exponential in number of unknown chunks using lattices.

ECDSA signature scheme

Public Parameters

- An elliptic curve E
- A base point G of order n on E.

Private Key

An integer *d* mod *n*.

Public Key

• Q = dG in uncompressed (x, y) or compressed (x, 1 bit of y) format.

Sign

- 1. Input message hash h.
- 2. Choose integer k mod n.
- 3. Compute point $(r, y_r) = kG$.
- 4. Output $(r, s = k^{-1}(h + dr) \mod n)$.

Partial key recovery for (EC)DSA:

An attacker learns some information about the signature nonce k. Can they efficiently recover the secret key d?

ECDSA key recovery from nonce k

k

Sign

- 1. Input message hash h.
- 2. Choose integer $k \mod n$.
- 3. Compute point $(r, y_r) = kG$.
- 4. Output $(r, s = k^{-1}(h + dr) \mod n)$.

Fact

If an attacker learns k for a signature, the long-term secret key d is revealed.

$$d = (sk - h)r^{-1} modes n$$

ECDSA key recovery from partial information about nonces

Polynomial time, using lattices. [Howgrave-Graham Smart 2001], [Nguyen Shparlinski 2003]

ECDSA key recovery from partial information about nonces

Secret key d can be computed from MSBs of nonces.

Input signatures $(r_1, s_1), \ldots, (r_m, s_m)$ on messages h_1, \ldots, h_m .

Then we have a system of equations in unknowns k_1, \ldots, k_m, d :

$$k_1 - s_1^{-1} r_1 d - s_1^{-1} h_1 \equiv 0 \mod n$$

$$k_2 - s_2^{-1} r_2 d - s_2^{-1} h_2 \equiv 0 \mod n$$

÷

$$k_m - s_m^{-1} r_m d - s_m^{-1} h_m \equiv 0 \bmod n$$

ECDSA key recovery from partial information about nonces

Secret key d can be computed from MSBs of nonces.

Input signatures $(r_1, s_1), \ldots, (r_m, s_m)$ on messages h_1, \ldots, h_m .

Assume we have learned MSBs of k_i so that $k_i = a_i + b_i$ with $b_i < B$.

Then we have a system of equations in unknowns b_1, \ldots, b_m, d :

$$b_{1} - s_{1}^{-1} r_{1} d + a_{1} - s_{1}^{-1} h_{1} \equiv 0 \mod n$$

$$b_{2} - s_{2}^{-1} r_{2} d + a_{2} - s_{2}^{-1} h_{2} \equiv 0 \mod n$$

$$\vdots$$

$$b_{m} - s_{m}^{-1} r_{m} d + a_{m} - s_{m}^{-1} h_{m} \equiv 0 \mod n$$

Formulating ECDSA as a hidden number problem [Howgrave-Graham Smart 2001], [Nguyen Shparlinski 2003]

We have a system of equations in unknowns b_1, \ldots, b_m, d :

 $b_1 - t_1 d - u_1 \equiv 0 \mod n$ $b_2 - t_2 d - u_2 \equiv 0 \mod n$

-

$$b_m - t_m d - u_m \equiv 0 \mod n$$

We assume the b_i are small.

This is an instance of the *hidden number problem* [Boneh Venkatesan 96].

Solving the hidden number problem with lattices $b_1 - t_1 d - u_1 \equiv 0 \mod n$ input:

 $\boldsymbol{b_m} - \boldsymbol{t_md} - \boldsymbol{u_m} \equiv 0 \bmod n$

in unknowns b_1, \ldots, b_m, d , where $|b_i| < B$.

Construct the lattice

$$M = \begin{bmatrix} n & & & & \\ & n & & & \\ & & \ddots & & \\ & & & n & \\ t_1 & t_2 & \dots & t_m & B/n & \\ u_1 & u_2 & \dots & u_m & B \end{bmatrix}$$

 $v_k = (b_1, b_2, \dots, b_m, Bd/n, B)$ is a short vector in this lattice.

Solving the hidden number problem with lattices Construct the lattice

We have:

- $\blacktriangleright \dim L = m + 2 \qquad \det L = B^2 n^{m-1}$
- Ignoring approximation factors, LLL or BKZ will find a vector

$$|v| \leq (\det L)^{1/\dim L}$$

- We are searching for a vector with length $|v_k| \leq \sqrt{m+2B}$.
- \blacktriangleright Thus we expect to find v_k when

$$\log B \leq \lfloor \log n(m-1)/m - (\log m)/2 \rfloor$$

Solving the hidden number problem with lattices

We expect to find v_k when

$$\log B \leq \lfloor \log n(m-1)/m - (\log m)/2 \rfloor$$

▶ 160-bit n: 2 bit leakage ≈ 100 signatures [LN 13]
▶ 256 bit n: 4 bit leakage easy, 3 bits 100+ signatures

An alternative: Fourier analysis approach (Bleichenbacher)
160 bits: 1-bit bias, ≈ 2³⁰ signatures, [AFGKTZ 14]
256 bits: 2-bit bias, ≈ 2³⁷ signatures, [Tibouchi 18]

Application: Intel SGX EPID cache leak [Dall De Micheli Eisenbarth Genkin Heninger Moghimi Yarom 2018]

Intel SGX EPID attestation protocol leaked nonce MSBs via cache leak.

Can recover secret keys using a few thousand signatures with a lattice attack.
ECDSA key recovery from LSBs of nonces

Solve as before. Bounds are basically the same.

Summary of Key Recovery Techniques

RSA Lattice techniques Large blocks of contiguous bits, no redundancy.

DSA Lattice techniques Few samples, several bits known.

Branch-and-prune

Non-contiguous bits, redundancy.

Fourier analysis

Many many samples, fewer bits known.

DH Kangaroo

Square root time; hard/annoying.

Open problem: Is there some way to get the best of all worlds?