How to recover cryptographic keys
from partial information

Nadia Heninger

University of Pennsylvania

December 10, 2018

Motivation: Side-channel attacks

N
2B
3

50 100 150 200
Observations

Textbook RSA

[Rivest Shamir Adleman 1977]

Public Key Private Key
N = pg modulus p,q primes
e encryption exponent d decryption exponent
e = 65537 in practice (d=e"1mod(p—1)(qg—1))
Encryption

public key = (N, e)

AN

ciphertext = message® mod N

N
?

/

message = ciphertext? mod N

CRT RSA

For efficiency, RSA implementations typically precompute
dp =d mod (p— 1) dg =d mod (q —1)
Then decrypt or sign by computing
m, = c% mod p mg = c% mod q.

Let u = g~ ! mod p. Then we can reconstruct m as

m = mq + qu(mp — mg)

Partial key recovery for RSA:

An attacker learns some information about p or gq. Can they
efficiently factor N7

More realistic scenario:

An attacker learns some information about d, and d;. Can they
efficiently recover d?

Factoring with Partial Information

Ne]

Already-factored modulus: Trivial.

Factoring with Partial Information

p _

N

One factor known: Trivial. (Division)

Factoring from CRT coefficients

N

With high probability, gcd(a®®~1 — 1, N) = p for random a.

Factoring with Partial Information

v

Neither factor known: Subexponential time. (Number field sieve)

Factoring with Partial Information
d
q N

N

Trivial. (Division + fixing a few bits.)

Factoring with Partial Information

Trivial. (Branch and prune.) [Heninger Shacham 09]

Factoring with Partial Information

Expected polynomial time. (Branch and prune.) [Heninger
Shacham 09]

Factoring with Partial Information

Expected polynomial time for > 50% of bits known. [Heninger
Shacham 09]

Factoring with partial information

0

Expected polynomial time when information/bit > .5.
[Paterson Polychroniadou Sibborn 2012] [BBGGBHLVVY 2017]

Branch and prune family of algorithms.

(RSA key recovery with redundancy.)

RSA key recovery with erasures

Remove all but a d-fraction of the bits, chosen
at random, from an RSA private key.

(Flip a coin at each bit of the key. With
probability , the attacker gets to see the bit’s
value.)

Simplest case

N = pq, get random bits of p and q.
N is known.

How to efficiently reconstruct the key?

“For example the paper tries to factor N = pq by writing
it as a set of binary equations over the bits of p and q.”

— J.S. Coron, "“Ten Reasons why a Paper is
Rejected from a Crypto Conference”

Branch and Prune Algorithm
[

X[o]
Lol fol oo [al o[folofe o [[P 2o o [a] T2 P
S N Y EN N N0 N W) N Y X Y N N S B Y BN
J

At each step, verify that
» pg = N mod 2’ at each step i.
» bits match known information.

Prune otherwise.

Heuristic Running Time Analysis
[Heninger Shacham 2009]

Assumption:
After an incorrect guess, induced bits are uniformly random.

Theorem (Heuristic, [BbGGBHLvVY 17])

When the average amount of self-information known is > .5 bit
per bit, the algorithm runs in expected linear time.

Key recovery for CRT-RSA with missing bits

[IGIES 2015]

Branch-and-prune works the same as before. (Must brute force k)

Key recovery for CRT-RSA with missing bits

RSA equations: ed, =1+ ky(p—1) edg =1+ kg(q —1)

Rearrange: (edp, — 1+ kp)(edy — 1+ kq) = kpkgN

Then kp, kg are related as:
(kp —1)(kqg — 1) = kpkgN mod e

We do not know k, or kg, but we need to brute force at most e
possible pairs.

For each guess of kp, kg, apply branch and prune to RSA
equations.

Application: Cachebleed attack
[Yarom Genkin Heninger 2016]

offset 0 78 15 56 63
OpenSSL cache timing
countermeasures:
tne s TN IV --- > fixed-window exponentiation
tne 7 [P NPT --- I > scatter multipliers in

: : : memory.
Line 95 M“|I4-1'II| Mlslll-l‘lll oo I\l"[ld-19l]

» Intel introduced cache banks to serve parts of cache.

» Cache bank conflicts produce timing differences.

» For windowed exponentiation, learn 3 LSBs of every 5 bits.

> 4096-bit key: 3.5 minutes on 36 cores, mostly brute-forcing k.

Application: Left-to-right square-and-multiply leak
[Bernstein Breitner Genkin Groot Bruinderink Heninger Lange van Vredendaal Yarom
2017]

» Libgcrypt sliding window implementation not constant time.

Flush+Reload cache attack leaks square and multiply sequence.

7 13 5 5
CT Lol Lol e ToToTe [o[e oo i e [iToTele] -

[slslmlsls[slslmlsls[s]s[s[s[m[s[s[s[s]s[m][s]s]s]--

1 1000 100 1
Only 40% of bits directly leaked — not enough to efficiently
recover.

» We can derive implicit information from square-and-multiply
sequence and efficiently recover key.

Coppersmith/lattice family of algorithms.

(RSA key recovery without redundancy.)

Factoring with Partial Information

p _

N

Polynomial time. (Lattice basis reduction.) [Coppersmith 96]

Factoring with Partial Information

p _

N

Polynomial time. (Lattice basis reduction.) [Coppersmith 1996]

Theorem (Coppersmith 1996)

Let N = pq with p,q ~ \/N. Given half the bits (most or least
significant) of p, we can factor N in polynomial time.

random_prime(2°512); q = random_prime(27512)
p*q

p- (p % 2°86)

random_prime(2°512); q = random_prime(2°512)
N = p*q

ol
Il

)
Il

p - (p % 2°86)

sage: hex(a)
’a9759e8c9fba8c0ec3e637d1e26e7b88befeb03ac199d1190
76e3294d16ffcaef629e2937a03592895b29b0ac708e79830
4330240bc000000000000000000000°

Key recovery from partial information.

= >

random_prime(2°512); q = random_prime(27512)
p*q

p- (p % 2°86)

2°86
matrix([[X"2, X*a, 0], [0, X, al, [0, O, N]I)
M.LLLQO)

p = random_prime(27°512); q = random_prime(2°512)
N = p*q

a=p- (p% 2786)

>
1]

2°86
matrix([[X"2, X*xa, 0], [0, X, al, [0, O, NII)
B = M.LLL(Q)

=
]

Q = B[O] [0]*x~2/X"2+B[0] [1]*x/X+B[0] [2]

sage: a+Q.roots(ring=7ZZ) [0] [0] == p
True

Partial key recovery and finding solutions modulo divisors

Theorem (Howgrave-Graham)

Given degree d polynomial f, integer N, we can find roots r
modulo divisors B of N satisfying

f(r)=0mod B
for |B| > NP, when |r| < N%*/d.
For RSA partial key recovery, we have
f(x)=a+x

and we want to find a solution vanishing modulo p ~ N/2 for
some p | N.

Coppersmith’s Algorithm Outline

Input: polynomial 7, integer V, bound 0 < 5 < 1.
Output: a root r modulo p, p|N, p > N¥.

In our example, we have f(x) = x + a.

We will construct a new polynomial Q(x) so that

Q(r)=0 over the integers.

If we construct Q(x) as
Q(x) = s(x)f(x) + t(x)N
with s(x), t(x) € Z[x], then by construction
Q(r) =0mod p

(In other words, Q(x) € (f(x), N) over Z[x].)

Manipulating polynomials
Input: f(x) =x+a, N, S.
Output: Q(x) € (f(x), N) over Z[x].
If we only care about polynomials @ of degree 2, then
Q(x) = axf(x) + c1f(x) + coN

with ¢, c1, ¢ € Z.

Qx? + Qix + Qo

Manipulating polynomials as coefficient vectors

We can represent elements of Z[x] as coefficient vectors:

gax? + ga_1x T 4+ + g ~ (8d>8d—1,---

If we construct the matrix

o =
)
= u O

Then the coefficient vector representing our polynomial
Q(x) = cxf(x) + cif (x) + coN

is an integer combination of the rows of this matrix.

,80)

Polynomial coefficient vectors and lattices

The set of vectors generated by integer combinations of the rows

of our matrix
0

1 a
0 1 a
N

is a lattice.

What is a lattice?

Definition
A lattice is a discrete additive subgroup
of R".

Definition

A lattice is a subset of R"” generated by
integer linear combinations of some
linearly independent basis {b1, ..., by}.

» Has algebraic properties
(it's a group under addition).

» Has geometric properties
(it lives in R" so has dot product,
distance).

Properties of lattices: Bases

» In n dimensions a lattice has a
basis of size at most n.

» The basis is not unique.

b

bo

bo

Properties of lattices: Determinant

Definition
The determinant of a lattice with a
basis matrix B is | det B|.

» The determinant is invariant for a
given lattice.

» Gives volume of fundamental
parallelepiped.

by

Properties of lattices: Minima

Let A1 > 0 be the length of the shortest
vector in the lattice.

Theorem (Minkowski)
(L) < v/ndet L1/7

Computational problems on lattices: SVP

Shortest Vector Problem (SVP)

Given an arbitrary basis for L, find the
shortest vector in L.

» SVP is NP-hard.

Computational problems on lattices: CVP

[]
([
[]
Closest Vector Problem (CVP)
Given an arbitrary basis for L, and a
point x find the vector in L closest to x.
. ([
» CVP is NP-hard.
[]

Algorithmic results
LLL

Given a basis for a lattice can in polynomial time find a reduced
basis {b;} s.t.
|b/| < 2(n—1)/2)\i

Theorem (LLL (Simplified Version))

We can find a vector of length
|V| < 2dim L(det L)l/dim L

» In practice on random lattices, LLL finds
v = 1.02"(det L)}/ 9mL_ [Nguyen,Stehle]

BKZ
Given a lattice basis, can in time 29(K) find a reduced basis s.t.
|bi| < kOW/k),

Coppersmith’s method outline

Input: f(x) € Z[x], N € Z. Output: r s.t. f(r) =0 mod p and
pIN.

Intermediate output: Q(x) such that Q(r) =0 over Z.
1. Q(x) € (f(x),N) so Q(r) =0 mod p by construction.

2. If |r| < R, then we can bound

1Q(r)| = |@2r® + Qur + Qo
< |Q|R? + |Q1|R + | Qo

3. If |Q(r)] < NP < pand Q(r) = 0 mod p then Q(r) = 0.

We want a @ in our lattice with short coefficient vector!

Coppersmith’s method outline

1. Construct a matrix of coefficient vectors of elements of
(f(x), N).

2. Run a lattice basis reduction algorithm on this matrix.
3. Construct a polynomial @ from the shortest vector output.

4. Factor @ to find its roots.

Running Coppersmith’s method on our example

Input: f(x)=x+a, N
Output: r < R such that f(r) = 0 mod p.

1. Construct lattice basis
R? aR
R a dimL =3

N 3
detL = R°N
Factor of R is so that Q(r) < |v| for v € L.

Running Coppersmith’s method on our example

Input: f(x)=x+a, N
Output: r < R such that f(r) = 0 mod p.

1. Construct lattice basis
R? aR
R a dimL =3

N 3
detL = R°N
Factor of R is so that Q(r) < |v| for v € L.

2. lgnoring approximation factor, we can solve when

1Q(r)| < |v| ~ det LY/ dmL « p
(R3N)1/3 < N1/2
R < N'/¢

In the example we had Igr = 86 and Ig p = 512.

Achieving the Howgrave-Graham bound r < p'/?

1. Generate lattice from subset of (f(x), N).
2. Allow higher degree polynomials.

Partial key recovery and related attacks

RSA particularly susceptible to partial key recovery attacks.

» Can factor given 1/2 bits of p. [Coppersmith 96]
» Can factor given 1/4 bits of d. [Boneh Durfee Frankel 98]

» Can factor given 1/2 bits of d mod (p — 1). [Blomer May 03]

Factoring with Partial Information

Polynomial time. (Lattice basis reduction.) [Blomer May 03]

Key recovery from partial information on CRT-RSA

Assume we know some a such that d, = a+ r and r small.
RSA equation: ed, =1+ ky(p—1)
Rearrange: (edp — 1+ kp) = kpp
Then we would like to solve for a small solution r to:
-1 —
x+a—e (14 ky)=0mod p
For e small, we can brute force over k,, and we know p|N.

We can apply Coppersmith/Howgrave-Graham technique as before.

Factoring with Partial Information

p -

v

Unknown.

Factoring with Partial Information

Polynomial time. (Lattice basis reduction.) [Coppersmith 1996]
[Howgrave-Graham 2001]

Theorem (Howgrave-Graham 2001)
Let N = pq, with p,q ~ v/N. Given a value a such that

a+2'r=p for r<./p,

we can factor N in polynomial time.

Proof.
1. Input f(x) = a+ 2'x.
2. Generate f'(x) = 27tf(x).

3. Run the Howgrave-Graham algorithm.

Factoring with Partial Information

- I
e

N

Heuristic polynomial time. (Lattice basis reduction.) [Herrmann
May 08]

Theorem (Herrmann May 2008)
Let N = pg, with p,q ~ v/N. Given a value a such that

a+2in +22n=p for nrn< p0'41,
we can factor N in polynomial time.
Proof.
1. Input bivariate polynomial f(x,y) = a+ 2%x 4 22y.

2. Run bivariate extension of Coppersmith/Howgrave-Graham
method.

O

Application: Taiwan Citizen Digital Certificate broken RNG
[Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren 2013]

» Taiwanese RSA smartcards had broken
RNG that would get “stuck’:

c9242492249292499249492449242492
24929249924949244924249224929249
92494924492424922492924992494924
492424922492924992494924492424e5

Used multivariate Coppersmith/Howgrave-Graham method to
factor keys by guessing locations that RNG would “stick” and
"unstick” .

Factoring with Partial Information

d 8 R B B B
e

N

Heuristic polynomial time. (Lattice basis reduction.) [Herrmann
May 08]

Factoring with Partial Information

d 11111011

v

Heuristic polynomial in Ig N, exponential in number of unknown
chunks. (Lattice basis reduction.) [Herrmann May 08]

Theorem (Herrmann May 2008)
Let N = pq, with p,q ~ v/N. Given a value a such that

a+2tn 442", =p for n...rm<p®3,
we can factor N in time polynomial in Ilg N and exponential in m.

Proof method.
Multivariate extension of Coppersmith/Howgrave-Graham
method.

Factoring with Partial Information

d HUNHIEHT

v

Exponential in number of unknown chunks using lattices.

ECDSA signature scheme

Public Parameters Private Key
» An elliptic curve E > An integer d mod n.
» A base point G of order n
on E.
Public Key

» Q = dG in uncompressed (x,y) or compressed (x,1 bit of y)
format.

Sign
1. Input message hash h.
2. Choose integer k mod n.
3. Compute point (r,y,) = kG.
4. Output (r,s = k=Y(h+ dr) mod n).

Partial key recovery for (EC)DSA:

An attacker learns some information about the signature nonce k.
Can they efficiently recover the secret key d?

ECDSA key recovery from nonce k
-

Sign
1. Input message hash h.
2. Choose integer k mod n.
3. Compute point (r,y,) = kG.
4. Output (r,s = k=Y(h + dr) mod n).

Fact
If an attacker learns k for a signature, the long-term secret key d is
revealed.

d = (sk—h)rtmodn

ECDSA key recovery from partial information about nonces

Polynomial time, using lattices. [Howgrave-Graham Smart 2001],
[Nguyen Shparlinski 2003]

ECDSA key recovery from partial information about nonces

Secret key d can be computed from MSBs of nonces.
Input signatures (r1,51),...,(rm,Sm) on messages hi,..., hny.
Then we have a system of equations in unknowns ki, ..., kpy,d:

kl—sflrld—sflhl =0modn

k2—s2_1r2d—52_1h2 =0modn

km — srglrmd — s,;lhm =0modn

ECDSA key recovery from partial information about nonces

Secret key d can be computed from MSBs of nonces.
Input signatures (r1,51),...,(rm,Sm) on messages hi,..., hpy.

Assume we have learned MSBs of k; so that k; = a; + b; with
b; < B.

Then we have a system of equations in unknowns by, ..., by, d:

bl—sl_lrld—i—al—sl_lhlEOmodn

b2—s;1r2d+az—sglh250modn

bm—s,glrmd—kam—sm hm, =0mod n

Formulating ECDSA as a hidden number problem
[Howgrave-Graham Smart 2001], [Nguyen Shparlinski 2003]

We have a system of equations in unknowns by, ..., by, d:

by —tid —u; =0mod n
by — tod — up =0 mod n

bm — tmd — Uy, =0 mod n
We assume the b; are small.

This is an instance of the hidden number problem [Boneh
Venkatesan 96].

Solving the hidden number problem with lattices

by —tid —up =0mod n
Input:

by — tmd — Uy, =0 mod n

in unknowns by, ..., by, d, where |b;| < B.

Construct the lattice

n
n
M =
n
tp tb ... tm B/n
R S 7 B]

vk = (b1, b2, ..., bm, Bd/n, B) is a short vector in this lattice.

Solving the hidden number problem with lattices
Construct the lattice

Want vector

M= . v = (b1, b, ..., b, Bd/n, B)
tt t ... tm B/n
uy U ... Unm B
We have:
» dmL=m+?2 det L = B2pm-1

> |gnoring approximation factors, LLL or BKZ will find a vector
‘V| < (det L)l/dimL

» We are searching for a vector with length |vx| < vm + 2B.
> Thus we expect to find v, when

log B < |logn(m—1)/m — (log m)/2]

Solving the hidden number problem with lattices

We expect to find v, when
log B < [logn(m—1)/m — (log m)/2]

» 160-bit n: 2 bit leakage ~ 100 signatures [LN 13]
» 256 bit n: 4 bit leakage easy, 3 bits 100+ signatures

An alternative: Fourier analysis approach (Bleichenbacher)
» 160 bits: 1-bit bias, ~ 230 signatures, [AFGKTZ 14]
> 256 bits: 2-bit bias, ~ 237 signatures, [Tibouchi 18]

Application: Intel SGX EPID cache leak

[Dall De Micheli Eisenbarth Genkin Heninger Moghimi Yarom 2018]

Intel SGX EPID attestation protocol leaked nonce MSBs via cache

leak.
12 bits known 7 bits known
AN

T
—— recentered
- - - not recentered

0.5 '

Success probability

| I | |
8 40 42 44 46 48

Il Il Il Il Il Il
18 20 22 24 26 28 30 32 34 36 3

Number of samples

Can recover secret keys using a few thousand signatures with a

lattice attack.

ECDSA key recovery from LSBs of nonces

k1

27t

27k,

Solve as before. Bounds are basically the same.

Summary of Key Recovery Techniques

RSA Lattice techniques Branch-and-prune
Large blocks of contiguous Non-contiguous bits,
bits, no redundancy. redundancy.

DSA Lattice techniques Fourier analysis
Few samples, several bits Many many samples,
known. fewer bits known.

DH Kangaroo

Square root time; hard/annoying.

Open problem: Is there some way to get the best of all worlds?

