
How to recover cryptographic keys
from partial information

Nadia Heninger

University of Pennsylvania

December 10, 2018



Motivation: Side-channel attacks

5s. 30s. 1m. 5m.

70
75
80
85

C
yc

le
s

55
60
65
70

C
yc

le
s

70
75
80
85

C
yc

le
s

50 100 150 200 250
Observations

70
75
80
85
90

C
yc

le
s



Textbook RSA
[Rivest Shamir Adleman 1977]

Public Key

N = pq modulus

e encryption exponent
e = 65537 in practice

Private Key

p, q primes

d decryption exponent
(d = e−1 mod (p − 1)(q − 1))

Encryption

public key = (N, e)

ciphertext = messagee mod N

message = ciphertextd mod N



CRT RSA

For efficiency, RSA implementations typically precompute

dp ≡ d mod (p − 1) dq ≡ d mod (q − 1)

Then decrypt or sign by computing

mp = cdp mod p mq = cdq mod q.

Let u = q−1 mod p. Then we can reconstruct m as

m = mq + qu(mp −mq)



Partial key recovery for RSA:

An attacker learns some information about p or q. Can they
efficiently factor N?

More realistic scenario:

An attacker learns some information about dp and dq. Can they
efficiently recover d?



Factoring with Partial Information

q

p

N

Already-factored modulus: Trivial.



Factoring with Partial Information

q

p

N

One factor known: Trivial. (Division)



Factoring from CRT coefficients

dq

dp

N

With high probability, gcd(aedp−1 − 1,N) = p for random a.



Factoring with Partial Information

q

p

N

Neither factor known: Subexponential time. (Number field sieve)



Factoring with Partial Information

q

p

N

Trivial. (Division + fixing a few bits.)



Factoring with Partial Information

q

p

N

Trivial. (Branch and prune.) [Heninger Shacham 09]



Factoring with Partial Information

q

p

N

Expected polynomial time. (Branch and prune.) [Heninger
Shacham 09]



Factoring with Partial Information

q

p

N

Expected polynomial time for ≥ 50% of bits known. [Heninger
Shacham 09]



Factoring with partial information

q

p

N

Expected polynomial time when information/bit ≥ .5.
[Paterson Polychroniadou Sibborn 2012] [BBGGBHLvVY 2017]



Branch and prune family of algorithms.

(RSA key recovery with redundancy.)



RSA key recovery with erasures

Remove all but a δ-fraction of the bits, chosen
at random, from an RSA private key.

(Flip a coin at each bit of the key. With
probability δ, the attacker gets to see the bit’s
value.)

Simplest case

N = pq, get random bits of p and q.
N is known.

How to efficiently reconstruct the key?



“For example the paper tries to factor N = pq by writing
it as a set of binary equations over the bits of p and q.”

– J.S. Coron, “Ten Reasons why a Paper is
Rejected from a Crypto Conference”



Branch and Prune Algorithm

p111011010000101000101011. . .

00X

110X

100. . .

101. . .

q101111101000100110011101. . .

11X

110X

001. . .

110. . .

At each step, verify that

I pq = N mod 2i at each step i .

I bits match known information.

Prune otherwise.



Heuristic Running Time Analysis
[Heninger Shacham 2009]

Assumption:

After an incorrect guess, induced bits are uniformly random.

Theorem (Heuristic, [BbGGBHLvVY 17])

When the average amount of self-information known is > .5 bit
per bit, the algorithm runs in expected linear time.



Key recovery for CRT-RSA with missing bits
[IGIES 2015]

dq

dp

N

Branch-and-prune works the same as before. (Must brute force kp.)



Key recovery for CRT-RSA with missing bits

RSA equations: edp = 1 + kp(p − 1) edq = 1 + kq(q − 1)

Rearrange: (edp − 1 + kp)(edq − 1 + kq) = kpkqN

Then kp, kq are related as:

(kp − 1)(kq − 1) ≡ kpkqN mod e

We do not know kp or kq, but we need to brute force at most e
possible pairs.

For each guess of kp, kq, apply branch and prune to RSA
equations.



Application: Cachebleed attack
[Yarom Genkin Heninger 2016]

Line 4

Line 1

Line 3

Line 7

Line 5

Line 6

Line 8

Line 0

Line 2

•
•
•

•
•
•

•
•
•

Line 95

M0[0-7] M1[0-7] ••• M7[0-7]

M8[0-7] M9[0-7] ••• M15[0-7]

M16[0-7] M17[0-7] ••• M23[0-7]

M24[0-7] M25[0-7] ••• M31[0-7]

M0[8-15] M1[8-15] ••• M7[8-15]

M8[8-15] M9[8-15] ••• M15[8-15]

M16[8-15] M17[8-15] ••• M23[8-15]

M24[8-15] M25[8-15] ••• M31[8-15]

M0[16-23] M1[16-23] ••• M7[16-23]

M24[184-191] M25[184-191] ••• M31[184-191]

offset 7 15 630 8 56

OpenSSL cache timing
countermeasures:

I fixed-window exponentiation

I scatter multipliers in
memory.

I Intel introduced cache banks to serve parts of cache.

I Cache bank conflicts produce timing differences.

I For windowed exponentiation, learn 3 LSBs of every 5 bits.

I 4096-bit key: 3.5 minutes on 36 cores, mostly brute-forcing k .



Application: Left-to-right square-and-multiply leak
[Bernstein Breitner Genkin Groot Bruinderink Heninger Lange van Vredendaal Yarom
2017]

I Libgcrypt sliding window implementation not constant time.

Flush+Reload cache attack leaks square and multiply sequence.

1 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 . . .

7 13 5 5

S S M S S S S M S S S S S S M S S S S S M S S S . . .

1 1 0 0 0 1 0 0 1

Only 40% of bits directly leaked → not enough to efficiently
recover.

I We can derive implicit information from square-and-multiply
sequence and efficiently recover key.



Coppersmith/lattice family of algorithms.

(RSA key recovery without redundancy.)



Factoring with Partial Information

q

p

N

Polynomial time. (Lattice basis reduction.) [Coppersmith 96]



Factoring with Partial Information

q

p

N

Polynomial time. (Lattice basis reduction.) [Coppersmith 1996]



Theorem (Coppersmith 1996)

Let N = pq with p, q ≈
√
N. Given half the bits (most or least

significant) of p, we can factor N in polynomial time.



p = random_prime(2^512); q = random_prime(2^512)

N = p*q

a = p - (p % 2^86)

X = 2^86

M = matrix([[X^2, X*a, 0], [0, X, a], [0, 0, N]])

B = M.LLL()

Q = B[0][0]*x^2/X^2+B[0][1]*x/X+B[0][2]

sage: a+Q.roots(ring=ZZ)[0][0] == p

True



p = random_prime(2^512); q = random_prime(2^512)

N = p*q

a = p - (p % 2^86)

sage: hex(a)

’a9759e8c9fba8c0ec3e637d1e26e7b88befeb03ac199d1190

76e3294d16ffcaef629e2937a03592895b29b0ac708e79830

4330240bc000000000000000000000’

Key recovery from partial information.

X = 2^86

M = matrix([[X^2, X*a, 0], [0, X, a], [0, 0, N]])

B = M.LLL()

Q = B[0][0]*x^2/X^2+B[0][1]*x/X+B[0][2]

sage: a+Q.roots(ring=ZZ)[0][0] == p

True



p = random_prime(2^512); q = random_prime(2^512)

N = p*q

a = p - (p % 2^86)

X = 2^86

M = matrix([[X^2, X*a, 0], [0, X, a], [0, 0, N]])

B = M.LLL()

Q = B[0][0]*x^2/X^2+B[0][1]*x/X+B[0][2]

sage: a+Q.roots(ring=ZZ)[0][0] == p

True



p = random_prime(2^512); q = random_prime(2^512)

N = p*q

a = p - (p % 2^86)

X = 2^86

M = matrix([[X^2, X*a, 0], [0, X, a], [0, 0, N]])

B = M.LLL()

Q = B[0][0]*x^2/X^2+B[0][1]*x/X+B[0][2]

sage: a+Q.roots(ring=ZZ)[0][0] == p

True



Partial key recovery and finding solutions modulo divisors

Theorem (Howgrave-Graham)

Given degree d polynomial f , integer N, we can find roots r
modulo divisors B of N satisfying

f (r) ≡ 0 mod B

for |B| > Nβ, when |r | < Nβ2/d .

For RSA partial key recovery, we have

f (x) = a + x

and we want to find a solution vanishing modulo p ≈ N1/2 for
some p | N.



Coppersmith’s Algorithm Outline

Input: polynomial f , integer N, bound 0 < β ≤ 1.
Output: a root r modulo p, p|N, p ≥ Nβ.

In our example, we have f (x) = x + a.

We will construct a new polynomial Q(x) so that

Q(r) = 0 over the integers.

If we construct Q(x) as

Q(x) = s(x)f (x) + t(x)N

with s(x), t(x) ∈ Z[x ], then by construction

Q(r) ≡ 0 mod p

(In other words, Q(x) ∈ 〈f (x),N〉 over Z[x ].)



Manipulating polynomials

Input: f (x) = x + a, N, β.
Output: Q(x) ∈ 〈f (x),N〉 over Z[x ].

If we only care about polynomials Q of degree 2, then

Q(x) = c2xf (x) + c1f (x) + c0N

with c2, c1, c0 ∈ Z.

c2 (x2 + xa + 0)
+ c1 ( x + a)
+ c0 N

Q2x
2 + Q1x + Q0



Manipulating polynomials as coefficient vectors

We can represent elements of Z[x ] as coefficient vectors:

gdx
d + gd−1x

d−1 + · · ·+ g0 ↔ (gd , gd−1, . . . , g0)

If we construct the matrix 1 a 0
0 1 a

N


Then the coefficient vector representing our polynomial

Q(x) = c2xf (x) + c1f (x) + c0N

is an integer combination of the rows of this matrix.



Polynomial coefficient vectors and lattices

The set of vectors generated by integer combinations of the rows
of our matrix 1 a 0

0 1 a
N


is a lattice.



What is a lattice?

Definition
A lattice is a discrete additive subgroup
of Rn.

Definition
A lattice is a subset of Rn generated by
integer linear combinations of some
linearly independent basis {b1, . . . , bn}.

I Has algebraic properties
(it’s a group under addition).

I Has geometric properties
(it lives in Rn so has dot product,
distance).

b1

b2



Properties of lattices: Bases

I In n dimensions a lattice has a
basis of size at most n.

I The basis is not unique.

b1

b2

b1

b2



Properties of lattices: Determinant

Definition
The determinant of a lattice with a
basis matrix B is | detB|.

I The determinant is invariant for a
given lattice.

I Gives volume of fundamental
parallelepiped.

b1

b2



Properties of lattices: Minima

Let λ1 > 0 be the length of the shortest
vector in the lattice.

Theorem (Minkowski)

λ1(L) <
√
n det L1/n

λ2

λ1



Computational problems on lattices: SVP

Shortest Vector Problem (SVP)

Given an arbitrary basis for L, find the
shortest vector in L.

I SVP is NP-hard.

λ2

λ1

b2

b1



Computational problems on lattices: CVP

Closest Vector Problem (CVP)

Given an arbitrary basis for L, and a
point x find the vector in L closest to x .

I CVP is NP-hard.

Given an arbitrary point, find the nearest lattice point.
CVP is NP-hard
Bounded-Distance Decoding (BDD)
Find all lattice points within a specified radius of an arbitrary point.



Algorithmic results

LLL
Given a basis for a lattice can in polynomial time find a reduced
basis {bi} s.t.

|bi | ≤ 2(n−1)/2λi

Theorem (LLL (Simplified Version))

We can find a vector of length

|v | < 2dim L(det L)1/ dim L

I In practice on random lattices, LLL finds
v = 1.02n(det L)1/ dim L. [Nguyen,Stehle]

BKZ
Given a lattice basis, can in time 2O(k) find a reduced basis s.t.
|bi | ≤ kO(n/k).



Coppersmith’s method outline

Input: f (x) ∈ Z[x ], N ∈ Z. Output: r s.t. f (r) ≡ 0 mod p and
p|N.

Intermediate output: Q(x) such that Q(r) = 0 over Z.

1. Q(x) ∈ 〈f (x),N〉 so Q(r) ≡ 0 mod p by construction.

2. If |r | < R, then we can bound

|Q(r)| = |Q2r
2 + Q1r + Q0|

≤ |Q2|R2 + |Q1|R + |Q0|

3. If |Q(r)| < Nβ ≤ p and Q(r) ≡ 0 mod p then Q(r) = 0.

We want a Q in our lattice with short coefficient vector!



Coppersmith’s method outline

1. Construct a matrix of coefficient vectors of elements of
〈f (x),N〉.

2. Run a lattice basis reduction algorithm on this matrix.

3. Construct a polynomial Q from the shortest vector output.

4. Factor Q to find its roots.



Running Coppersmith’s method on our example

Input: f (x) = x + a, N
Output: r < R such that f (r) ≡ 0 mod p.

1. Construct lattice basisR2 aR
R a

N


dim L = 3

det L = R3N
Factor of R is so that Q(r) ≤ |v | for v ∈ L.

2. Ignoring approximation factor, we can solve when

|Q(r)| ≤ |v | ≈ det L1/ dim L < p

(R3N)1/3 < N1/2

R < N1/6

In the example we had lg r = 86 and lg p = 512.



Running Coppersmith’s method on our example

Input: f (x) = x + a, N
Output: r < R such that f (r) ≡ 0 mod p.

1. Construct lattice basisR2 aR
R a

N


dim L = 3

det L = R3N
Factor of R is so that Q(r) ≤ |v | for v ∈ L.

2. Ignoring approximation factor, we can solve when

|Q(r)| ≤ |v | ≈ det L1/ dim L < p

(R3N)1/3 < N1/2

R < N1/6

In the example we had lg r = 86 and lg p = 512.



Achieving the Howgrave-Graham bound r < p1/2

1. Generate lattice from subset of 〈f (x),N〉k .

2. Allow higher degree polynomials.



Partial key recovery and related attacks

RSA particularly susceptible to partial key recovery attacks.

I Can factor given 1/2 bits of p. [Coppersmith 96]

I Can factor given 1/4 bits of d . [Boneh Durfee Frankel 98]

I Can factor given 1/2 bits of d mod (p − 1). [Blömer May 03]



Factoring with Partial Information

dq

dp

N

Polynomial time. (Lattice basis reduction.) [Blömer May 03]



Key recovery from partial information on CRT-RSA

Assume we know some a such that dp = a + r and r small.

RSA equation: edp = 1 + kp(p − 1)

Rearrange: (edp − 1 + kp) = kpp

Then we would like to solve for a small solution r to:

x + a− e−1(1 + kp) ≡ 0 mod p

For e small, we can brute force over kp, and we know p|N.

We can apply Coppersmith/Howgrave-Graham technique as before.



Factoring with Partial Information

q

p

N

Unknown.



Factoring with Partial Information

q

p

N

Polynomial time. (Lattice basis reduction.) [Coppersmith 1996]
[Howgrave-Graham 2001]



Theorem (Howgrave-Graham 2001)

Let N = pq, with p, q ≈
√
N. Given a value a such that

a + 2tr = p for r ≤ √p,

we can factor N in polynomial time.

Proof.

1. Input f (x) = a + 2tx .

2. Generate f ′(x) = 2−t f (x).

3. Run the Howgrave-Graham algorithm.



Factoring with Partial Information

q

p

N

Heuristic polynomial time. (Lattice basis reduction.) [Herrmann
May 08]



Theorem (Herrmann May 2008)

Let N = pq, with p, q ≈
√
N. Given a value a such that

a + 2t1r1 + 2t2r2 = p for r1r2 ≤ p0.41,

we can factor N in polynomial time.

Proof.

1. Input bivariate polynomial f (x , y) = a + 2t1x + 2t2y .

2. Run bivariate extension of Coppersmith/Howgrave-Graham
method.



Application: Taiwan Citizen Digital Certificate broken RNG
[Bernstein, Chang, Cheng, Chou, Heninger, Lange, van Someren 2013]

I Taiwanese RSA smartcards had broken
RNG that would get “stuck”:

c9242492249292499249492449242492

24929249924949244924249224929249

92494924492424922492924992494924

492424922492924992494924492424e5

Used multivariate Coppersmith/Howgrave-Graham method to
factor keys by guessing locations that RNG would “stick” and
”unstick”.



Factoring with Partial Information

q

p

N

Heuristic polynomial time. (Lattice basis reduction.) [Herrmann
May 08]



Factoring with Partial Information

q

p

N

Heuristic polynomial in lgN, exponential in number of unknown
chunks. (Lattice basis reduction.) [Herrmann May 08]



Theorem (Herrmann May 2008)

Let N = pq, with p, q ≈
√
N. Given a value a such that

a + 2t1r1 + · · ·+ 2tmrm = p for r1 . . . rm ≤ p0.3,

we can factor N in time polynomial in lgN and exponential in m.

Proof method.
Multivariate extension of Coppersmith/Howgrave-Graham
method.



Factoring with Partial Information

q

p

N

Exponential in number of unknown chunks using lattices.



ECDSA signature scheme

Public Parameters

I An elliptic curve E

I A base point G of order n
on E .

Private Key

I An integer d mod n.

Public Key

I Q = dG in uncompressed (x , y) or compressed (x , 1 bit of y)
format.

Sign

1. Input message hash h.

2. Choose integer k mod n.

3. Compute point (r , yr ) = kG .

4. Output (r , s = k−1(h + dr) mod n).



Partial key recovery for (EC)DSA:

An attacker learns some information about the signature nonce k.
Can they efficiently recover the secret key d?



ECDSA key recovery from nonce k

k

Sign

1. Input message hash h.

2. Choose integer k mod n.

3. Compute point (r , yr ) = kG .

4. Output (r , s = k−1(h + dr) mod n).

Fact
If an attacker learns k for a signature, the long-term secret key d is
revealed.

d = (sk − h)r−1 mod n



ECDSA key recovery from partial information about nonces

k1

k2

...

Polynomial time, using lattices. [Howgrave-Graham Smart 2001],
[Nguyen Shparlinski 2003]



ECDSA key recovery from partial information about nonces

Secret key d can be computed from MSBs of nonces.

Input signatures (r1, s1), . . . , (rm, sm) on messages h1, . . . , hm.

Then we have a system of equations in unknowns k1, . . . , km, d :

k1 − s−11 r1d − s−11 h1 ≡ 0 mod n

k2 − s−12 r2d − s−12 h2 ≡ 0 mod n

...

km − s−1m rmd − s−1m hm ≡ 0 mod n



ECDSA key recovery from partial information about nonces

Secret key d can be computed from MSBs of nonces.

Input signatures (r1, s1), . . . , (rm, sm) on messages h1, . . . , hm.

Assume we have learned MSBs of ki so that ki = ai + bi with
bi < B.

Then we have a system of equations in unknowns b1, . . . , bm, d :

b1 − s−11 r1d + a1 − s−11 h1 ≡ 0 mod n

b2 − s−12 r2d + a2 − s−12 h2 ≡ 0 mod n

...

bm − s−1m rmd + am − s−1m hm ≡ 0 mod n



Formulating ECDSA as a hidden number problem
[Howgrave-Graham Smart 2001], [Nguyen Shparlinski 2003]

We have a system of equations in unknowns b1, . . . , bm, d :

b1 − t1d − u1 ≡ 0 mod n

b2 − t2d − u2 ≡ 0 mod n

...

bm − tmd − um ≡ 0 mod n

We assume the bi are small.

This is an instance of the hidden number problem [Boneh
Venkatesan 96].



Solving the hidden number problem with lattices

Input:
b1 − t1d − u1 ≡ 0 mod n

...

bm − tmd − um ≡ 0 mod n

in unknowns b1, . . . , bm, d , where |bi | < B.

Construct the lattice

M =



n
n

. . .

n
t1 t2 . . . tm B/n
u1 u2 . . . um B


vk = (b1, b2, . . . , bm,Bd/n,B) is a short vector in this lattice.



Solving the hidden number problem with lattices
Construct the lattice

M =



n
n

. . .

n
t1 t2 . . . tm B/n
u1 u2 . . . um B


Want vector
vk = (b1, b2, . . . , bm,Bd/n,B)

We have:

I dim L = m + 2 det L = B2nm−1

I Ignoring approximation factors, LLL or BKZ will find a vector

|v | ≤ (det L)1/ dim L

I We are searching for a vector with length |vk | ≤
√
m + 2B.

I Thus we expect to find vk when

logB ≤ blog n(m − 1)/m − (logm)/2c



Solving the hidden number problem with lattices

We expect to find vk when

logB ≤ blog n(m − 1)/m − (logm)/2c

I 160-bit n: 2 bit leakage ≈ 100 signatures [LN 13]

I 256 bit n: 4 bit leakage easy, 3 bits 100+ signatures

An alternative: Fourier analysis approach (Bleichenbacher)

I 160 bits: 1-bit bias, ≈ 230 signatures, [AFGKTZ 14]

I 256 bits: 2-bit bias, ≈ 237 signatures, [Tibouchi 18]



Application: Intel SGX EPID cache leak
[Dall De Micheli Eisenbarth Genkin Heninger Moghimi Yarom 2018]

Intel SGX EPID attestation protocol leaked nonce MSBs via cache
leak.

18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

0

0.5

1

7 bits known12 bits known

Number of samples

S
u
cc
es
s
p
ro
b
ab

il
it
y recentered

not recentered

Can recover secret keys using a few thousand signatures with a
lattice attack.



ECDSA key recovery from LSBs of nonces

k1

k2

2−`k1

2−`k2

Solve as before. Bounds are basically the same.



Summary of Key Recovery Techniques

RSA Lattice techniques

Large blocks of contiguous
bits, no redundancy.

Branch-and-prune

Non-contiguous bits,
redundancy.

DSA Lattice techniques

Few samples, several bits
known.

Fourier analysis

Many many samples,
fewer bits known.

DH Kangaroo

Square root time; hard/annoying.

Open problem: Is there some way to get the best of all worlds?


